Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 174: 245-257, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096959

RESUMO

Recovery of the collagen structure following Achilles tendon rupture is poor, resulting in a high risk for re-ruptures. The loading environment during healing affects the mechanical properties of the tendon, but the relation between loading regime and healing outcome remains unclear. This is partially due to our limited understanding regarding the effects of loading on the micro- and nanostructure of the healing tissue. We addressed this through a combination of synchrotron phase-contrast X-ray microtomography and small-angle X-ray scattering tensor tomography (SASTT) to visualize the 3D organization of microscale fibers and nanoscale fibrils, respectively. The effect of in vivo loading on these structures was characterized in early healing of rat Achilles tendons by comparing full activity with immobilization. Unloading resulted in structural changes that can explain the reported impaired mechanical performance. In particular, unloading led to slower tissue regeneration and maturation, with less and more disorganized collagen, as well as an increased presence of adipose tissue. This study provides the first application of SASTT on soft musculoskeletal tissues and clearly demonstrates its potential to investigate a variety of other collagenous tissues. STATEMENT OF SIGNIFICANCE: Currently our understanding of the mechanobiological effects on the recovery of the structural hierarchical organization of injured Achilles tendons is limited. We provide insight into how loading affects the healing process by using a cutting-edge approach to for the first time characterize the 3D micro- and nanostructure of the regenerating collagen. We uncovered that, during early healing, unloading results in a delayed and more disorganized regeneration of both fibers (microscale) and fibrils (nanoscale), as well as increased presence of adipose tissue. The results set the ground for the development of further specialized protocols for tendon recovery.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Ratos , Animais , Tendão do Calcâneo/diagnóstico por imagem , Colágeno/farmacologia , Cicatrização , Tomografia por Raios X
2.
Acta Biomater ; 168: 264-276, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479155

RESUMO

Tendons are collagen-based connective tissues where the composition, structure and mechanics respond and adapt to the local mechanical environment. Adaptation to prolonged inactivity can result in stiffer tendons that are more prone to injury. However, the complex relation between reduced loading, structure, and mechanical performance is still not fully understood. This study combines mechanical testing with high-resolution synchrotron X-ray imaging, scattering techniques and histology to elucidate how reduced loading affects the structural properties and mechanical response of rat Achilles tendons on multiple length scales. The results show that reduced in vivo loading leads to more crimped and less organized fibers and this structural inhomogeneity could be the reason for the altered mechanical response. Unloading also seems to change the fibril response, possibly by altering the strain partitioning between hierarchical levels, and to reduce cell density. This study elucidates the relation between in vivo loading, the Achilles tendon nano-, meso­structure and mechanical response. The results provide fundamental insights into the mechanoregulatory mechanisms guiding the intricate biomechanics, tissue structural organization, and performance of complex collagen-based tissues. STATEMENT OF SIGNIFICANCE: Achilles tendon properties allow a dynamic interaction between muscles and tendon and influence force transmission during locomotion. Lack of physiological loading can have dramatic effects on tendon structure and mechanical properties. We have combined the use of cutting-edge high-resolution synchrotron techniques with mechanical testing to show how reduced loading affects the tendon on multiple hierarchical levels (from nanoscale up to whole organ) clarifying the relation between structural changes and mechanical performance. Our findings set the first step to address a significant healthcare challenge, such as the design of tailored rehabilitations that take into consideration structural changes after tendon immobilization.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Ratos , Animais , Tendão do Calcâneo/fisiologia , Tecido Conjuntivo/patologia , Traumatismos dos Tendões/patologia , Colágeno , Fibras Musculares Esqueléticas , Fenômenos Biomecânicos
3.
FASEB J ; 37(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219456

RESUMO

Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing. In this study we characterize HO deposition, microstructure, and location at different stages of healing in a rat model. We use phase contrast-enhanced synchrotron microtomography, a state-of-the-art technique that allows 3D imaging at high-resolution of soft biological tissues without invasive or time-consuming sample preparation. The results increase our understanding of HO deposition, from the early inflammatory phase of tendon healing, by showing that the deposition is initiated as early as one week after injury in the distal stump and mostly growing on preinjury HO deposits. Later, more deposits form first in the stumps and then all over the tendon callus, merging into large, calcified structures, which occupy up to 10% of the tendon volume. The HOs were characterized by a looser connective trabecular-like structure and a proteoglycan-rich matrix containing chondrocyte-like cells with lacunae. The study shows the potential of 3D imaging at high-resolution by phase-contrast tomography to better understand ossification in healing tendons.


Assuntos
Tendão do Calcâneo , Ossificação Heterotópica , Animais , Ratos , Cicatrização , Osteogênese , Osso e Ossos
4.
J Struct Biol X ; 7: 100087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938139

RESUMO

Heterotopic mineralization entails pathological mineral formation inside soft tissues. In human tendons mineralization is often associated with tendinopathies, tendon weakness and pain. In Achilles tendons, mineralization is considered to occur through heterotopic ossification (HO) primarily in response to tendon pathologies. However, refined details regarding HO deposition and microstructure are unknown. In this study, we characterize HO in intact rat Achilles tendons through high-resolution phase contrast enhanced synchrotron X-ray tomography. Furthermore, we test the potential of studying local tissue injury by needling intact Achilles tendons and the relation between tissue microdamage and HO. The results show that HO occurs in all intact Achilles tendons at 16 weeks of age. HO deposits are characterized by an elongated ellipsoidal shape and by a fiber-like internal structure which suggests that some collagen fibers have mineralized. The data indicates that deposition along fibers initiates in the pericellular area, and propagates into the intercellular area. Within HO deposits cells are larger and more rounded compared to tenocytes between unmineralized fibers, which are fewer and elongated. The results also indicate that multiple HO deposits may merge into bigger structures with time by accession along unmineralized fibers. Furthermore, the presence of unmineralized regions within the deposits may indicate that HOs are not only growing, but mineral resorption may also occur. Additionally, phase contrast synchrotron X-ray tomography allowed to distinguish microdamage at the fiber level in response to needling. The needle injury protocol could in the future enable to elucidate the relation between local inflammation, microdamage, and HO deposition.

5.
Matrix Biol ; 115: 32-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435426

RESUMO

The specific viscoelastic mechanical properties of Achilles tendons are highly dependent on the structural characteristics of collagen at and between all hierarchical levels. Research has been conducted on the deformation mechanisms of positional tendons and single fibrils, but knowledge about the coupling between the whole tendon and nanoscale deformation mechanisms of more commonly injured energy-storing tendons, such as Achilles tendons, remains sparse. By exploiting the highly periodic arrangement of tendons at the nanoscale, in situ loading of rat Achilles tendons during small-angle X-ray scattering acquisition was used to investigate the collagen structural response during load to rupture, cyclic loading and stress relaxation. The fibril strain was substantially lower than the applied tissue strain. The fibrils strained linearly in the elastic region of the tissue, but also exhibited viscoelastic properties, such as an increased stretchability and recovery during cyclic loading and fibril strain relaxation during tissue stress relaxation. We demonstrate that the changes in the width of the collagen reflections could be attributed to strain heterogeneity and not changes in size of the coherently diffracting domains. Fibril strain heterogeneity increased with applied loads and after the toe region, fibrils also became increasingly disordered. Additionally, a thorough evaluation of radiation damage was performed. In conclusion, this study clearly displays the simultaneous structural response and adaption of the collagen fibrils to the applied tissue loads and provide novel information about the transition of loads between length scales in the Achilles tendon.


Assuntos
Tendão do Calcâneo , Ratos , Animais , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos , Colágeno/química , Matriz Extracelular
6.
Sci Rep ; 11(1): 17313, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453067

RESUMO

Achilles tendons are mechanosensitive, and their complex hierarchical structure is in part the result of the mechanical stimulation conveyed by the muscles. To fully understand how their microstructure responds to mechanical loading a non-invasive approach for 3D high resolution imaging suitable for soft tissue is required. Here we propose a protocol that can capture the complex 3D organization of the Achilles tendon microstructure, using phase-contrast enhanced synchrotron micro-tomography (SR-PhC-µCT). We investigate the effects that sample preparation and imaging conditions have on the resulting image quality, by considering four types of sample preparations and two imaging setups (sub-micrometric and micrometric final pixel sizes). The image quality is assessed using four quantitative parameters. The results show that for studying tendon collagen fibers, conventional invasive sample preparations such as fixation and embedding are not necessary or advantageous. Instead, fresh frozen samples result in high-quality images that capture the complex 3D organization of tendon fibers in conditions as close as possible to natural. The comprehensive nature of this innovative study by SR-PhC-µCT breaks ground for future studies of soft complex biological tissue in 3D with high resolution in close to natural conditions, which could be further used for in situ characterization of how soft tissue responds to mechanical stimuli on a microscopic level.


Assuntos
Tendão do Calcâneo/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Melhoramento Biomédico , Feminino , Imageamento Tridimensional , Microscopia de Contraste de Fase , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Síncrotrons
7.
Sci Rep ; 11(1): 958, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441859

RESUMO

Tendon tissue storage and preconditioning are often used in biomechanical experiments and whether this generates alterations in tissue properties is essential to know. The effect of storage and preconditioning on dense connective tissues, like tendons, is fairly understood. However, healing tendons are unlike and contain a loose connective tissue. Therefore, we investigated if storage of healing tendons in the fridge or freezer changed the mechanical properties compared to fresh tendons, using a pull-to-failure or a creep test. Tissue morphology and cell viability were also evaluated. Additionally, two preconditioning levels were tested. Rats underwent Achilles tendon transection and were euthanized 12 days postoperatively. Statistical analyzes were done with one-way ANOVA or Student's t-test. Tissue force and stress were unaltered by storage and preconditioning compared to fresh samples, while high preconditioning increased the stiffness and modulus (p ≤ 0.007). Furthermore, both storage conditions did not modify the viscoelastic properties of the healing tendon, but altered transverse area, gap length, and water content. Cell viability was reduced after freezing. In conclusion, preconditioning on healing tissues can introduce mechanical data bias when having extensive tissue strength diversity. Storage can be used before biomechanical testing if structural properties are measured on the day of testing.


Assuntos
Tendão do Calcâneo/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Cicatrização/fisiologia , Animais , Sobrevivência Celular/fisiologia , Tecido Conjuntivo/fisiopatologia , Feminino , Congelamento , Ratos , Ratos Sprague-Dawley , Traumatismos dos Tendões/fisiopatologia , Resistência à Tração/fisiologia
8.
PLoS One ; 15(12): e0236681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315857

RESUMO

Mechanical loading affects tendon healing and recovery. However, our understanding about how physical loading affects recovery of viscoelastic functions, collagen production and tissue organisation is limited. The objective of this study was to investigate how different magnitudes of loading affects biomechanical and collagen properties of healing Achilles tendons over time. Achilles tendon from female Sprague Dawley rats were cut transversely and divided into two groups; normal loading (control) and reduced loading by Botox (unloading). The rats were sacrificed at 1, 2- and 4-weeks post-injury and mechanical testing (creep test and load to failure), small angle x-ray scattering (SAXS) and histological analysis were performed. The effect of unloading was primarily seen at the early time points, with inferior mechanical and collagen properties (SAXS), and reduced histological maturation of the tissue in unloaded compared to loaded tendons. However, by 4 weeks no differences remained. SAXS and histology revealed heterogeneous tissue maturation with more mature tissue at the peripheral region compared to the center of the callus. Thus, mechanical loading advances Achilles tendon biomechanical and collagen properties earlier compared to unloaded tendons, and the spatial variation in tissue maturation and collagen organization across the callus suggests important regional (mechano-) biological activities that require more investigation.


Assuntos
Tendão do Calcâneo/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Traumatismos dos Tendões/fisiopatologia , Cicatrização/fisiologia , Tendão do Calcâneo/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Toxinas Botulínicas Tipo A/fisiologia , Colágeno/farmacologia , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Estresse Mecânico , Traumatismos dos Tendões/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Difração de Raios X/métodos
9.
FASEB J ; 34(10): 13409-13418, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794252

RESUMO

Elastic fibers containing elastin play an important role in tendon functionality, but the knowledge on presence and function of elastin during tendon healing is limited. The aim of this study was to investigate elastin content and distribution in intact and healing Achilles tendons and to understand how elastin influence the viscoelastic properties of tendons. The right Achilles tendon was completely transected in 81 Sprague-Dawley rats. Elastin content was quantified in intact and healing tendons (7, 14, and 28 days post-surgery) and elastin distribution was visualized by immunohistochemistry at 14 days post-surgery. Degradation of elastin by elastase incubation was used to study the role of elastin on viscoelastic properties. Mechanical testing was either performed as a cyclic test (20× 10 N) or as a creep test. We found significantly higher levels of elastin in healing tendons at all time-points compared to intact tendons (4% in healing tendons 28 days post-surgery vs 2% in intact tendons). The elastin was more widely distributed throughout the extracellular matrix in the healing tendons in contrast to the intact tendon where the distribution was not so pronounced. Elastase incubation reduced the elastin levels by approximately 30% and led to a 40%-50% reduction in creep. This reduction was seen in both intact and healing tendons. Our results show that healing tendons contain more elastin and is more compliable than intact tendons. The role of elastin in tendon healing and tissue compliance indicates a protective role of elastic fibers to prevent re-injuries during early tendon healing. PLAIN LANGUAGE SUMMARY: Tendons transfer high loads from muscles to bones during locomotion. They are primarily made by the protein collagen, a protein that provide strength to the tissues. Besides collagen, tendons also contain other building blocks such as, for example, elastic fibers. Elastic fibers contain elastin and elastin is important for the extensibility of the tendon. When a tendon is injured and ruptured the tissue heals through scar formation. This scar tissue is different from a normal intact tendon and it is important to understand how the tendons heal. Little is known about the presence and function of elastin during healing of tendon injuries. We have shown, in animal experiments, that healing tendons have higher amounts of elastin compared to intact tendons. The elastin is also spread throughout the tissue. When we reduced the levels of this protein, we discovered altered mechanical properties of the tendon. The healing tendon can normally extend quite a lot, but after elastin removal this extensibility was less obvious. The ability of the healing tissue to extend is probably important to protect the tendon from re-injuries during the first months after rupture. We therefore propose that the tendons heal with a large amount of elastin to prevent re-ruptures during early locomotion.


Assuntos
Tendão do Calcâneo , Elastina/fisiologia , Ruptura/metabolismo , Traumatismos dos Tendões/metabolismo , Cicatrização , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Animais , Fenômenos Biomecânicos , Feminino , Ratos , Ratos Sprague-Dawley
10.
PLoS One ; 15(3): e0229908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155184

RESUMO

We have previously shown that changes in the microbiome influence how the healing tendon responds to different treatments. The aim of this study was to investigate if changes in the microbiome influence the response to mechanical loading during tendon healing. 90 Sprague-Dawley rats were used. Specific Opportunist and Pathogen Free (SOPF) rats were co-housed with Specific Pathogen Free (SPF) rats, carrying Staphylococcus aureus and other opportunistic microbes. After 6 weeks of co-housing, the SOPF rats were contaminated which was confirmed by Staphylococcus aureus growth. Clean SOPF rats were used as controls. The rats were randomized to full loading or partial unloading by Botox injections in their calf muscles followed by complete Achilles tendon transection. Eight days later, the healing tendons were tested mechanically. The results were analysed by a 2-way ANOVA with interaction between loading and contamination on peak force as the primary outcome and there was an interaction for both peak force (p = 0.049) and stiffness (p = 0.033). Furthermore, partial unloading had a profound effect on most outcome variables. In conclusion, the response to mechanical loading during tendon healing is influenced by changes in the microbiome. Studies aiming for clinical relevance should therefore consider the microbiome of laboratory animals.


Assuntos
Tendão do Calcâneo/lesões , Fenômenos Biomecânicos/imunologia , Modelos Animais de Doenças , Microbiota/imunologia , Cicatrização/imunologia , Animais , Feminino , Humanos , Infecções Oportunistas/imunologia , Infecções Oportunistas/microbiologia , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Estresse Mecânico
11.
Am J Sports Med ; 46(13): 3281-3287, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30265844

RESUMO

BACKGROUND: The immune system reflects the microbiome (microbiota). Modulation of the immune system during early tendon remodeling by dexamethasone treatment can improve rat Achilles tendon healing. The authors tested whether changes in the microbiota could influence the effect of dexamethasone treatment. HYPOTHESIS: A change in microbiome would influence the response to dexamethasone on regenerate remodeling, specifically tendon material properties (peak stress). STUDY DESIGN: Controlled laboratory study. METHODS: Specific opportunist and pathogen-free female rats were housed separately (n = 41) or together with specific pathogen-free rats carrying opportunistic microbes such as Staphylococcus aureus (n = 41). After 6 weeks, all co-housed rats appeared healthy but now carried S aureus. Changes in the gut bacterial flora were tested by API and RapID biochemical tests. All rats (clean and contaminated) underwent Achilles tendon transection under aseptic conditions. Flow cytometry was performed 8 days postoperatively on tendon tissue. Sixty rats received subcutaneous dexamethasone or saline injections on days 5 through 9 after transection. The tendons were tested mechanically on day 12. The predetermined primary outcome was the interaction between contamination and dexamethasone regarding peak stress, tested by 2-way analysis of variance. RESULTS: Dexamethasone increased peak stress in all groups but more in contaminated rats (105%) than in clean rats (53%) (interaction, P = .018). A similar interaction was found for an estimate of elastic modulus ( P = .021). Furthermore, dexamethasone treatment reduced transverse area but had small effects on peak force and stiffness. In rats treated with saline only, contamination reduced peak stress by 16% ( P = .04) and elastic modulus by 35% ( P = .004). Contamination led to changes in the gut bacterial flora and higher levels of T cells (CD3+CD4+) in the healing tendon ( P < .05). CONCLUSION: Changes in the microbiome influence tendon healing and enhance the positive effects of dexamethasone treatment during the early remodeling phase of tendon healing. CLINICAL RELEVANCE: The positive effect of dexamethasone on early tendon remodeling in rats is strikingly strong. If similar effects could be shown in humans, immune modulation by a few days of systemic corticosteroids, or more specific compounds, could open new approaches to rehabilitation after tendon injury.


Assuntos
Tendão do Calcâneo/lesões , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Microbiota , Traumatismos dos Tendões/terapia , Animais , Feminino , Ratos , Organismos Livres de Patógenos Específicos , Cicatrização
12.
PLoS One ; 13(7): e0201211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044869

RESUMO

BACKGROUND: Mechanical loading stimulates Achilles tendon healing. However, various degrees of loading appear to have different effects on the mechanical properties of the healing tendon, and strong loading might create microdamage in the tissue. This suggests that different mechanisms might be activated depending on the magnitude of loading. The aim of this study was to investigate these mechanisms further. METHODS: Female rats had their right Achilles tendon cut transversely and divided into three groups: 1) unloading (calf muscle paralysis by Botox injections, combined with joint fixation by a steel-orthosis), 2) mild loading (Botox only), 3) strong loading (free cage activity). Gene expression was analyzed by PCR, 5 days post-injury, and mechanical testing 8 days post-injury. The occurrence of microdamage was analyzed 3, 5, or 14 days post-injury, by measuring leakage of injected fluorescence-labelled albumin in the healing tendon tissue. RESULTS: Peak force, peak stress, and elastic modulus of the healing tendons gradually improved with increased loading as well as the expression of extracellular matrix genes. In contrast, only strong loading increased transverse area and affected inflammation genes. Strong loading led to higher fluorescence (as a sign of microdamage) compared to mild loading at 3 and 5 days post-injury, but not at 14 days. DISCUSSION: Our results show that strong loading improves both the quality and quantity of the healing tendon, while mild loading only improves the quality. Strong loading also induces microdamage and alters the inflammatory response. This suggests that mild loading exert its effect via mechanotransduction mechanisms, while strong loading exert its effect both via mechanotransduction and the creation of microdamage. CONCLUSION: In conclusion, mild loading is enough to increase the quality of the healing tendon without inducing microdamage and alter the inflammation in the tissue. This supports the general conception that early mobilization of a ruptured tendon in patients is advantageous.


Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Traumatismos dos Tendões/fisiopatologia , Cicatrização/fisiologia , Tendão do Calcâneo/patologia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Módulo de Elasticidade , Feminino , Regulação da Expressão Gênica , Inflamação/patologia , Inflamação/fisiopatologia , Distribuição Aleatória , Ratos Sprague-Dawley , Traumatismos dos Tendões/patologia
13.
Sci Rep ; 7(1): 13067, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026107

RESUMO

Tendon function and homeostasis rely on external loading. This study investigates the biological mechanisms behind tendon biomechanical function and how the mechanical performance is affected by reduced daily loading. The Achilles tendons of 16 weeks old female Sprague Dawley rats (n = 40) were unloaded for 5 weeks by inducing muscle paralysis with botulinum toxin injections in the right gastrocnemius and soleus muscles. The contralateral side was used as control. After harvest, the tendons underwent biomechanical testing to assess viscoelasticity (n = 30 rats) and small angle X-ray scattering to determine the structural properties of the collagen fibrils (n = 10 rats). Fourier transform infrared spectroscopy and histological staining (n = 10 rats) were performed to investigate the collagen and proteoglycan content. The results show that the stiffness increased in unloaded tendons, together with an increased collagen content. Creep and axial alignment of the collagen fibers were reduced. Stress-relaxation increased whereas hysteresis was reduced in response to unloading with botox treatment. Our findings indicate that altered matrix deposition relies on mechanical loading to reorganize the newly formed tissue, without which the viscoelastic behavior is impaired. The results demonstrate that reduced daily loading deprives tendons of their viscoelastic properties, which could increase the risk of injury.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/metabolismo , Toxinas Botulínicas Tipo A/uso terapêutico , Animais , Colágeno/metabolismo , Feminino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/metabolismo , Viscosidade/efeitos dos fármacos
14.
Sci Rep ; 7(1): 12468, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963482

RESUMO

Inflammation initiates tendon healing and then normally resolves more or less completely. Unresolved inflammation might disturb the remodeling process. We hypothesized that suppression of inflammation during the early remodeling phase by systemic dexamethasone treatment can improve healing. 36 rats underwent Achilles tendon transection and were randomized to dexamethasone or saline on days 0-4 after surgery (early inflammatory phase), and euthanasia day 7. Another 54 rats received injections days 5-9 (early remodeling phase) and were euthanized day 12 for mechanical, histological and flow cytometric evaluation. Dexamethasone treatment days 0-4 reduced the cross-sectional area, peak force and stiffness by day 7 to less than half (p < 0.001 for all), while material properties (peak stress and elastic modulus) were not significantly affected. In contrast, dexamethasone treatment days 5-9 increased peak force by 39% (p = 0.002) and stiffness by 58% (p < 0.001). The cross-sectional area was reduced by 42% (p < 0.001). Peak stress and elastic modulus were more than doubled (p < 0.001 for both). Semi-quantitative histology at day 12 showed that late dexamethasone treatment improved collagen alignment, and flow cytometry revealed reduced numbers of CD8a+ cytotoxic T cells in the tendon callus. These results suggest that downregulation of lingering inflammation during the early remodeling phase can improve healing.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Traumatismos dos Tendões/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Tendão do Calcâneo/imunologia , Tendão do Calcâneo/lesões , Animais , Antígenos CD8/biossíntese , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Esquema de Medicação , Módulo de Elasticidade/efeitos dos fármacos , Módulo de Elasticidade/fisiologia , Feminino , Imunofenotipagem , Injeções Subcutâneas , Ratos , Ratos Sprague-Dawley , Traumatismos dos Tendões/imunologia , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/reabilitação , Tenotomia/métodos , Cicatrização/imunologia
15.
J Appl Physiol (1985) ; 123(4): 800-815, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705996

RESUMO

Mechanical loading stimulates tendon healing both when applied in the inflammatory phase and in the early remodeling phase of the process, although not necessarily via the same mechanisms. We investigated the gene response to mechanical loading in these two phases of tendon healing. The right Achilles tendon in rats was transected, and the hindlimbs were unloaded by tail suspension. The rats were exposed to 5 min of treadmill running 3 or 14 days after tendon transection. Thereafter, they were resuspended for 15 min or 3 h until euthanasia. The controls were suspended continuously. Gene analysis was first performed by microarray analysis followed by quantitative RT-PCR on selected genes, focusing on inflammation. Fifteen minutes after loading, the most important genes seemed to be the transcription factors EGR1 and C-FOS, regardless of healing phase. These transcription factors might promote tendon cell proliferation and differentiation, stimulate collagen production, and regulate inflammation. Three hours after loading on day 3, inflammation was strongly affected. Seven inflammation-related genes were upregulated according to PCR: CCL20, CCL7, IL-6, NFIL3, PTX3, SOCS1, and TLR2. These genes can be connected to macrophages, T cells, and recruitment of leukocytes. According to Ingenuity Pathway Analysis, the recruitment of leukocytes was increased by loading on day 3, which also was confirmed by histology. This inflammation-related gene response was not seen on day 14 Our results suggest that the immediate gene response after mechanical loading is similar in the early and late phases of healing but the late gene response is different.NEW & NOTEWORTHY This study investigates the direct effect of mechanical loading on gene expression during different healing phases in tendon healing. One isolated episode of mechanical loading was studied in otherwise unloaded healing tendons. This enabled us to study a time sequence, i.e., which genes were the first ones to be regulated after the loading episode.


Assuntos
Tendão do Calcâneo/metabolismo , Inflamação/metabolismo , Condicionamento Físico Animal , Traumatismos dos Tendões/metabolismo , Cicatrização , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Regulação da Expressão Gênica , Elevação dos Membros Posteriores , Inflamação/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Corrida , Traumatismos dos Tendões/genética
17.
Acta Orthop ; 88(4): 416-421, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296518

RESUMO

Background and purpose - In 3 papers in Acta Orthopaedica 10 years ago, we described that platelet-rich plasma (PRP) improves tendon healing in a rat Achilles transection model. Later, we found that microtrauma has similar effects, probably acting via inflammation. This raised the suspicion that the effect ascribed to growth factors within PRP could instead be due to unspecific influences on inflammation. While testing this hypothesis, we noted that the effect seemed to be related to the microbiota. Material and methods - We tried to reproduce our old findings with local injection of PRP 6 h after tendon transection, followed by mechanical testing after 11 days. This failed. After fruitless variations in PRP production protocols, leukocyte concentration, and physical activity, we finally tried rats carrying potentially pathogenic bacteria. In all, 242 rats were used. Results - In 4 consecutive experiments on pathogen-free rats, no effect of PRP on healing was found. In contrast, apparently healthy rats carrying Staphylococcus aureus showed increased strength of the healing tendon after PRP treatment. These rats had lower [corrected] levels of cytotoxic T-cells in their spleens. Interpretation - The failure to reproduce older experiments in clean rats was striking, and the difference in response between these and Staphylococcus-carrying rats suggests that the PRP effect is dependent on the immune status. PRP functions may be more complex than just the release of growth factors. Extrapolation from our previous findings with PRP to the situation in humans therefore becomes even more uncertain.


Assuntos
Tendão do Calcâneo/cirurgia , Plasma Rico em Plaquetas/metabolismo , Cicatrização , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Contagem de Leucócitos , Fator de Crescimento Derivado de Plaquetas/análise , Ratos , Ratos Sprague-Dawley , Cicatrização/fisiologia
18.
J Appl Physiol (1985) ; 119(5): 534-40, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159755

RESUMO

Early tendon healing can be stimulated by mechanical loading and inhibited by cyclooxygenase (COX) inhibitors (nonsteroidal anti-inflammatory drugs). Therefore, we investigated if impairment of tendon healing by a COX-2 inhibitor (parecoxib) is related to loading. Because loading might infer microdamage, which also stimulates healing, we also investigated if this effect is inhibited by parecoxib. The Achilles tendon was transected in 114 rats. Three degrees of loading were used: full loading, partial unloading, and unloading (no unloading, Botox injections in the plantar flexor muscles, or Botox in combination with tail suspension). For each loading condition, the rats received either parecoxib or saline. In a second experiment, rats were unloaded with Botox, and the tendon was subjected to microdamage by needling combined with either saline or parecoxib. Mechanical testing day 7 showed that there was a significant interaction between loading and parecoxib for peak force at failure (P < 0.01). However, logarithmic values showed no significant interaction, meaning that we could not exclude that the inhibitory effect of parecoxib was proportionate to the degree of loading. Microbleeding was common in the healing tissue, suggesting that loading caused microdamage. Needling increased peak force at failure (P < 0.01), and this effect of microdamage was almost abolished by parecoxib (P < 0.01). Taken together, this suggests that COX-2 inhibition impairs the positive effects of mechanical loading during tendon healing, mainly by reducing the response to microdamage.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Traumatismos dos Tendões/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Feminino , Elevação dos Membros Posteriores/métodos , Isoxazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
19.
J Appl Physiol (1985) ; 116(1): 54-60, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24177691

RESUMO

Mechanical loading increases the strength of healing tendons, but also induces small localized bleedings. Therefore, it is unclear if increased strength after loading is a response to mechanotransduction or microtrauma. We have previously found only five genes to be up-regulated 15 min after a single loading episode, of them four were transcription factors. These genes are followed by hundreds of genes after 3 h, many of them involved in inflammation. We now compared healing in mechanically unloaded tendons with or without added microtrauma induced by needling of the healing tissue. Nineteen rats received Botox into the calf muscle to reduce loading, and the Achilles tendon was transected. Ten rats were randomized to needling days 2-5. Mechanical testing on day 8 showed increased strength by 45% in the needling group. Next, another 24 rats were similarly unloaded, and 16 randomized to needling on day 5 after transection. Nineteen characteristic genes, known to be regulated by loading in this model, were analyzed by qRT-PCR. Four of these genes were regulated 15 min after needling. Three of them (Egr1, c-Fos, Rgs1) were among the five regulated genes after loading in a previous study. Sixteen of the 19 genes were regulated after 3 h, in the same way as after loading. In conclusion, needling increased strength, and there was a striking similarity between the gene expression response to needling and mechanical loading. This suggests that the response to loading in early tendon healing can, at least in part, be a response to microtrauma.


Assuntos
Tendão do Calcâneo/fisiopatologia , Expressão Gênica/genética , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/fisiopatologia , Cicatrização/genética , Cicatrização/fisiologia , Tendão do Calcâneo/lesões , Animais , Toxinas Botulínicas Tipo A/efeitos adversos , Feminino , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Músculo Esquelético/fisiopatologia , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Traumatismos dos Tendões/induzido quimicamente
20.
J Appl Physiol (1985) ; 114(11): 1519-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23519232

RESUMO

Loading can stimulate tendon healing. In healing rat Achilles tendons, we have found more than 150 genes upregulated or downregulated 3 h after one loading episode. We hypothesized that these changes were preceded by a smaller number of regulatory genes and thus performed a microarray 15 min after a short loading episode, to capture the primary response to loading. We transected the Achilles tendon of 54 rats and allowed them to heal. The hind limbs were unloaded by tail-suspension during the entire experiment, except during the loading episode. The healing tendon tissue was analyzed by mechanical testing, microarray, and quantitative real-time polymerase chain reaction (qRT-PCR). Mechanical testing showed that 5 min of loading each day for 4 days created stronger tissue. The microarray analysis after one loading episode identified 15 regulated genes. Ten genes were analyzed in a repeat experiment with new rats using qRT-PCR. This confirmed the increased expression of four genes: early growth response 2 (Egr2), c-Fos, FosB, and regulation of G protein signaling 1 (Rgs1). The other genes were unaltered. We also analyzed the expression of early growth response 1 (Egr1), which is often co-regulated with c-Fos or Egr2, and found that this was also increased after loading. Egr1, Egr2, c-Fos, and FosB are transcription factors that can be triggered by numerous stimuli. However, Egr1 and Egr2 are necessary for normal tendon development, and can induce ectopic expression of tendon markers. The five regulated genes appear to constitute a general activation machinery. The further development of gene regulation might depend on the tissue context.


Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Regulação da Expressão Gênica , Mecanotransdução Celular , Proteoma/metabolismo , Traumatismos dos Tendões/fisiopatologia , Cicatrização , Animais , Feminino , Ratos , Estresse Mecânico , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...